A Composite View of Surface Signatures and Interior Properties of Nonlinear Internal Waves: Observations and Applications

Author:

Chang Ming-Huei1,Lien Ren-Chieh2,Yang Yiing Jang3,Tang Tswen Yung1,Wang Joe1

Affiliation:

1. Institute of Oceanography, National Taiwan University, Taipei, Taiwan

2. Applied Physics Laboratory, University of Washington, Seattle, Washington

3. Department of Marine Science, Naval Academy, Kaohsiung, Taiwan

Abstract

Abstract Surface signatures and interior properties of large-amplitude nonlinear internal waves (NLIWs) in the South China Sea (SCS) were measured during a period of weak northeast wind (∼2 m s−1) using shipboard marine radar, an acoustic Doppler current profiler (ADCP), a conductivity–temperature–depth (CTD) profiler, and an echo sounder. In the northern SCS, large-amplitude NLIWs propagating principally westward appear at the tidal periodicity, and their magnitudes are modulated at the spring–neap tidal cycle. The surface scattering strength measured by the marine radar is positively correlated with the local wind speed when NLIWs are absent. When NLIWs approach, the surface scattering strength within the convergence zone is enhanced. The sea surface scattering induced by NLIWs is equivalent to that of a ∼6 m s−1 surface wind speed (i.e., 3 times greater than the actual surface wind speed). The horizontal spatial structure of the enhanced sea surface scattering strength predicts the horizontal spatial structure of the NLIW. The observed average half-amplitude full width of NLIWs λη/2 is 1.09 ± 0.2 km; the average half-amplitude full width of the enhanced scattering strength λI/2 is ∼0.57 λη/2. The average half-amplitude full width of the enhanced horizontal velocity convergence of NLIWs λ∂xu/2 is approximately equal to λI/2. The peak of the enhanced surface scattering leads the center of NLIWs by ∼0.46 λη/2. NLIW horizontal velocity convergence is positively correlated with the enhancement of the surface scattering strength. NLIW amplitude is positively correlated with the spatial integration of the enhancement of the surface scattering strength within the convergence zone of NLIWs. Empirical formulas are obtained for estimating the horizontal velocity convergence and the amplitude of NLIWs using radar measurements of surface scattering strength. The enhancement of the scattering strength exhibits strong asymmetry; the scattering strength observed from behind the propagating NLIW is 24% less than that observed ahead, presumably caused by the skewness and the breaking of surface waves induced by NLIWs. Above the center of NLIWs, the surface scattering strength is enhanced slightly, associated with isotropic surface waves presumably induced or modified by NLIWs. This analysis concludes that in low-wind conditions remote sensing measurements may provide useful predictions of horizontal velocity convergences, amplitudes, and spatial structures of NLIWs. Further applications and modification of the presented empirical formulas in different conditions of wind speed, surface waves, and NLIWs or with other remote sensing methods are encouraged.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference18 articles.

1. Theory of radar imaging of internal waves.;Alpers;Nature,1985

2. Energy flux of nonlinear internal waves in northern South China Sea.;Chang;Geophys. Res. Lett.,2006

3. Introduction to Geophysical Fluid Dynamics.;Cushman-Roisin,1994

4. Dankert, H. , 2003: Measurement of waves, wave groups, and wind fields using nautical radar image sequences. Ph.D. dissertation, Department of Earth Sciences, University of Hamburg, 115 pp.

5. Wind- and wave-field measurements using marine X-Band radar-image sequences.;Dankert;IEEE J. Oceanic Eng.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3