A New Method for Ice–Ice Aggregation in the Adaptive Habit Model

Author:

Sulia Kara J.1,Lebo Zachary J.2,Przybylo Vanessa M.1,Schmitt Carl G.3

Affiliation:

1. a Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

2. b University of Wyoming, Laramie, Wyoming

3. c NCAR, Boulder, Colorado

Abstract

AbstractA novel methodology for modeling ice–ice aggregation is presented. This methodology combines a modified hydrodynamic collection algorithm with bulk aggregate characteristic information from an offline simulator that collects ice particles, namely, the Ice Particle and Aggregate Simulator, and has been implemented into the Adaptive Habit Microphysics scheme in the Weather Research and Forecasting Model. Aggregates, or snow, are formed via collection of cloud ice particles, where initial ice characteristics and the resulting geometry determine aggregate characteristics. Upon implementation, idealized squall-line simulations are performed to examine the new methodology in comparison with commonly used bulk microphysics schemes. It is found that the adaptive habit aggregation parameterization develops snow and reduces ice mass and number concentrations compared to other schemes. The development of aggregates through the new methodology cascades into other interesting effects, including enhancements in ice and snow growth, as well as homogeneous freezing. Further microphysical analyses reveal varying sensitivities, where snow processes are most sensitive to the new parameterization, followed by ice, then cloud, rain, and graupel processes. Further, the new scheme results in enhancements in surface precipitation due to the persistence of snow at lower altitudes. This persistence is a result of shape-dependent melting and sublimation, increasing the residence time. Moreover, these low-level enhancements are reflected in increases in radar reflectivity at the surface and its spatial distribution. Finally, the ability to predict snow shape and density allows for the simulation of polarimetric radar quantities, resulting in signature enhancements compared to schemes that do not consider spatial and temporal variations in snow shape and density.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3