Jet Interaction and the Influence of a Minimum Phase Speed Bound on the Propagation of Eddies

Author:

O'Rourke Amanda K.1,Vallis Geoffrey K.1

Affiliation:

1. Princeton University, Princeton, New Jersey

Abstract

Abstract The feedback between planetary-scale eddies and analogs of the midlatitude eddy-driven jet and the subtropical jet is investigated in a barotropic β-plane model. In the model the subtropical jet is generated by a relaxation process and the eddy-driven jet by an imposed wavemaker. A minimum zonal phase speed bound is proposed in addition to the established upper bound, where the zonal phase speed of waves must be less than that of the zonal mean zonal flow. Cospectral analysis of eddy momentum flux convergence shows that eddy activity is generally restricted by these phase speed bounds. The wavenumber-dependent minimum phase speed represents a turning line for meridionally propagating waves. By varying the separation distance between the relaxation and stirring regions, it is found that a sustained, double-jet state is achieved when either a critical or turning latitude forms in the interjet region. The interjet turning latitude filters eddies by zonal wavenumber such that shorter waves tend to be reflected off of the relaxed jet and are confined to the eddy-driven jet. The interjet region is transparent to long waves that act to blend the jets and may be associated with barotropic instability. The eddy-driven and relaxed jets tend to merge owing to the propagation of these long waves through the relaxed jet waveguide.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3