A Multiscale Model for the Modulation and Rectification of the ITCZ

Author:

Biello Joseph A.1,Majda Andrew J.2

Affiliation:

1. Department of Mathematics, University of California, Davis, Davis, California

2. Courant Institute of Mathematical Sciences, Center for Atmosphere–Ocean Science, New York University, New York, New York

Abstract

Abstract The authors introduce the modulation of the ITCZ equations (M-ITCZ), which describes the multiscale dynamics of the ITCZ on diurnal to monthly time scales in which mesoscale convectively coupled Rossby waves in the ITCZ are modulated by a large-scale gravity wave that is also generated by convection. Westward-propagating disturbances are observed to cause ITCZ breakup over the course of a few days, and the M-ITCZ meso-/planetary-scale coupled waves provide a mechanism for this interaction, thereby providing a framework to study the modulation and rectification of the Hadley circulation over long zonal length scales in the ITCZ. The authors consider examples of zonally symmetric heating profiles in the M-ITCZ system and generate a Hadley circulation consistent with the observed winds. Zonally localized heating creates a wind response throughout the tropics that is carried by a pair of zonally propagating gravity bores driving mean easterlies at the base and mean westerlies at the top of the troposphere. The bores carry low-temperature and upward velocity perturbations to the west of the heating and high-temperature and downward velocity perturbations to the east, making the westward-propagating branch favorable to convective triggering and the eastward-propagating branch favorable to convective suppression. The mesoscale dynamics of the M-ITCZ describe convectively forced, nonlinear Rossby waves propagating in the zonal winds created by the planetary-scale gravity wave. The authors suggest that convective coupling slows the westward-propagating gravity wave, thereby creating a coupled gravity–Rossby wave that is similar to the westward-propagating disturbances seen in the ITCZ.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3