Snow Growth and Transport Patterns in Orographic Storms as Estimated from Airborne Vertical-Plane Dual-Doppler Radar Data

Author:

Geerts Bart1,Yang Yang1,Rasmussen Roy2,Haimov Samuel1,Pokharel Binod1

Affiliation:

1. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

2. Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Airborne vertical-plane dual-Doppler cloud radar data, collected on wind-parallel flight legs over a mountain in Wyoming during 16 winter storms, are used to analyze the growth, transport, and sedimentation of snow. In all storms the wind is rather strong, such that the flow is unblocked. The sampled clouds are mixed phase, shallow, and generally produce snowfall over the mountain only. The 2D scatterers’ mean motion in the vertical along-track plane below flight level is synthesized using one radar antenna pointing to nadir, and one 30° forward of nadir. This yields instantaneous cross-mountain hydrometeor streamlines. The dynamics of the orographic flow dominate the precipitation patterns across the mountain. Three patterns are distinguished: the first two contain small convective cells, either boundary layer (BL) convection or elevated convection, the latter likely due to the release of potential instability in orographically lifted air. In these patterns the cross-mountain flow is relatively undisturbed. Precipitation from BL convection falls mostly on the windward side but precipitation from elevated convection may fall mostly in the lee. The third pattern is marked by more stratified flow, often with vertically propagating mountain waves, and with strong, plunging flow in the lee, resulting in rapid clearing of the storm across the crest and occasionally a hydraulic jump. In this case, most snow tends to fall upwind of the crest, although a shallow, sublimating snow “foot” is often seen over the leeward slopes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3