Atmospheric Boundary Layer Structure and Turbulence during Sea Fog on the Southern China Coast

Author:

Huang Huijun1,Liu Hongnian2,Huang Jian1,Mao Weikang1,Bi Xueyan1

Affiliation:

1. Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, and Joint Open Laboratory of Marine Meteorology, Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

2. School of Atmospheric Sciences, Nanjing University, Nanjing, China

Abstract

Abstract Small-scale turbulence has an essential role in sea-fog formation and evolution, but is not completely understood. This study analyzes measurements of the small-scale turbulence, together with the boundary layer structure and the synoptic and mesoscale conditions over the life cycle of a cold advection fog event and a warm advection fog event, both off the coast of southern China. The measurement data come from two sites: one on the coast and one at sea. These findings include the following: 1) For cold advection fog, the top can extend above the inversion base, but formation of an overlaying cloud causes the fog to dissipate. 2) For warm advection fog, two layers of low cloud can merge to form deep fog, with the depth exceeding 1000 m, when strong advection of warm moist air produces active thermal-turbulence mixing above the thermal-turbulence interface. 3) Turbulence near the sea surface is mainly thermally driven for cold advection fog, but mechanically driven for warm advection fog. 4) The momentum fluxes of both fog cases are below 0.04 kg m−1 s−2. However, the sensible and latent heat flux differ between the cases: in the cold advection fog case, the sensible and latent heat fluxes are roughly upward, averaging 2.58 and 26.75 W m−2, respectively; however, in the warm advection fog case, the sensible and latent heat flux are mostly downward, averaging −6.98 and −6.22 W m−2, respectively. 5) Low-level vertical advection is important for both fogs, but has a larger influence on fog development in the warm advection fog case.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference37 articles.

1. The computation of equivalent potential temperature;Bolton;Mon. Wea. Rev.,1980

2. Summer sea fogs of the central California coast;Byers;Publ. Geogr.,1930

3. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition;Draxler;Aust. Meteor. Mag.,1998

4. The Coupled Boundary Layers and Air–Sea Transfer Experiment in low winds;Edson;Bull. Amer. Meteor. Soc.,2007

5. Note on the physics of fog formation;Emmons;J. Meteor.,1947

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3