A 1/4°-Spatial-Resolution Daily Sea Surface Temperature Climatology Based on a Blended Satellite and in situ Analysis

Author:

Banzon Viva F.1,Reynolds Richard W.2,Stokes Diane3,Xue Yan4

Affiliation:

1. NOAA/NESDIS/National Climatic Data Center, Asheville, North Carolina

2. Cooperative Institute for Climate and Satellites, North Carolina State University, Asheville, North Carolina

3. NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

4. NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Abstract

Abstract A new sea surface temperature (SST) climatological mean was constructed using the first 30 years (1982–2011) of the NOAA daily optimum interpolation (OI) SST. The daily analysis blends in situ and satellite data on a ¼° (~25 km) spatial grid. Use of an analysis allows computation of a climatological value for all ocean grid points, even those without observations. Comparisons were made with a monthly, 1°-spatial-resolution climatology produced by the National Centers for Environmental Prediction, computed primarily from the NOAA weekly OISST. Both climatologies were found to provide a good representation of major oceanic features and the annual temperature cycle. However, the daily climatology showed tighter gradients along western boundary currents and better resolution along coastlines. The two climatologies differed by over 0.6°C in high-SST-gradient regions because of resolution differences. The two climatologies also differed at very high latitudes, where the sea ice processing differed between the OISST products. In persistently cloudy areas, the new climatology was generally cooler by approximately 0.4°C, probably reflecting differences between the input satellite SSTs to the two analyses. Since the new climatology represents mean conditions at scales that match the daily analysis, it would be more appropriate for computing the corresponding daily anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3