On the Surface Temperature Sensitivity of the Reflected Shortwave, Outgoing Longwave, and Net Incident Radiation

Author:

Aumann Hartmut H.1,Ruzmaikin Alexander1,Behrangi Ali1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract The global-mean top-of-atmosphere incident solar radiation (ISR) minus the outgoing longwave radiation (OLR) and the reflected shortwave radiation (RSW) is the net incident radiation (NET). This study analyzes the global-mean NET sensitivity to a change in the global-mean surface temperature by applying the interannual anomaly correlation technique to 9 yr of Atmospheric Infrared Sounder (AIRS) global measurements of RSW and OLR under cloudy and clear conditions. The study finds the observed sensitivity of NET that includes the effects of clouds to be −1.5 ± 0.25 (1σ) W m−2 K−1 and the clear NET sensitivity to be −2.0 ± 0.2 (1σ) W m−2 K−1, consistent with previous work using Earth Radiation Budget Experiment and Clouds and the Earth’s Radiant Energy System data. The cloud effect, +0.5 ± 0.2 (1σ) W m−2 K−1, is a positive component of the NET sensitivity. The similarity of the NET sensitivities derived from forced and unforced models invites a comparison between the observed sensitivities and the effective sensitivities calculated for the Fourth Assessment Report models, although this requires some caution: The effective model sensitivities with clouds range from −0.88 to −1.64 W m−2 K−1, the clear NET sensitivity in the models ranges from −2.32 to −1.73 W m−2 K−1, and the cloud forcing sensitivities range from +0.14 to +1.18 W m−2 K−1. The effective NET and clear NET sensitivities derived from the models are statistically consistent with those derived from the AIRS data, considering the observational and model derivation uncertainties.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3