Affiliation:
1. Qingdao Collaborative Innovation Center of Marine Science and Technology, College of Information Science and Engineering, Ocean University of China, Qingdao, China
Abstract
Abstract
A decade of newly available Argo float data for the period 2004–13 are used to investigate the three-dimensional structures of upper-ocean seasonality with emphasis on the vertical aspects of annual and semiannual cycles, yielding three main findings with oceanographic implications. First, the vertical evolution of the horizontal pattern of annual and semiannual amplitudes appears to be highly “nonlinear,” suggesting that the thermodynamic causes are depth dependent. The global ocean seasonality exhibits a vertically varying pattern in space, including midlatitude maxima in the near-surface layer due to solar forcing, zonal “strips” in the subsurface layer due to the equatorial current system, and systematic westward phase propagation in the intermediate layer due to annual Rossby waves. Second, a zone of 500 ± 300-m depths along with a 6-month periodicity are chosen as appropriate space–time “windows” for detecting eddy signatures via Argo-derived temperature amplitude and phase, respectively. It is revealed that the eddy-induced “blobby” pattern observed previously by satellite altimeter appears in the Agro result as “woodsy” bulks, which can be well illustrated in the semiannual amplitude and phase maps at window depths. Meanwhile, six eddy deserts paired in each ocean basin have also been identified. Third, the existence of a dozen vertical quasi-annual amphidromes is first reported, with cophase lines that may radiate toward the ~2000-m lower limit of Argo measurement. The well-known global meridional overturning circulation and the pseudozonal overturning currents in the equatorial Pacific, Atlantic, and Indian Oceans may possibly contribute to the observed vertical amphidromes.
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献