Affiliation:
1. National Center for Atmospheric Research, Boulder, Colorado
Abstract
The role of sampling variability in ENSO composites of winter surface air temperature and precipitation over North America during the period 1920–2013 is assessed for observations and ensembles of coupled model simulations in which sea surface temperature anomalies in the tropical eastern Pacific are nudged to those of the real world. The individual members of each model ensemble show a surprising amount of diversity in their ENSO composites, despite being constructed from the same observed set of 18 El Niño and 14 La Niña events. For a given model, this ensemble spread can only be due to sampling variability, that is, aliasing of internal variability that is unrelated to ENSO, which in turn is shown to arise from internal atmospheric dynamics rather than coupled ocean–atmosphere processes. Analogous ensemble spread is evident in 2000 synthetic ENSO composites based on observations using random sampling techniques. These synthetic composites provide information on the range of spatial patterns and amplitudes associated with imperfect estimation of the forced ENSO signal in the observational record. In some locations, the amplitude of the estimated ENSO signal can vary by more than a factor of two. This observational uncertainty necessitates an approach to model assessment that considers not only the model’s forced response to ENSO, given by its ensemble-mean ENSO composite, but also its representation of internal variability unrelated to ENSO. Such an approach is used to reveal fidelities and shortcomings in the Community Earth System Model, version 1.
Publisher
American Meteorological Society
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献