The Global Historical Climatology Network Monthly Temperature Dataset, Version 4

Author:

Menne Matthew J.1,Williams Claude N.1,Gleason Byron E.1,Rennie J. Jared2,Lawrimore Jay H.1

Affiliation:

1. NOAA/National Centers for Environmental Information/Dataset Section, Asheville, North Carolina

2. Cooperative Institute for Climate and Satellites, North Carolina State University, Asheville, North Carolina

Abstract

We describe a fourth version of the Global Historical Climatology Network (GHCN)-monthly (GHCNm) temperature dataset. Version 4 (v4) fulfills the goal of aligning GHCNm temperature values with the GHCN-daily dataset and makes use of data from previous versions of GHCNm as well as data collated under the auspices of the International Surface Temperature Initiative. GHCNm v4 has many thousands of additional stations compared to version 3 (v3) both historically and with short time-delay updates. The greater number of stations as well as the use of records with incomplete data during the base period provides for greater global coverage throughout the record compared to earlier versions. Like v3, the monthly averages are screened for random errors and homogenized to address systematic errors. New to v4, uncertainties are calculated for each station series, and regional uncertainties scale directly from the station uncertainties. Correlated errors in the station series are quantified by running the homogenization algorithm as an ensemble. Additional uncertainties associated with incomplete homogenization and use of anomalies are then incorporated into the station ensemble. Further uncertainties are quantified at the regional level, the most important of which is for incomplete spatial coverage. Overall, homogenization has a smaller impact on the v4 global trend compared to v3, though adjustments lead to much greater consistency than between the unadjusted versions. The adjusted v3 global mean therefore falls within the range of uncertainty for v4 adjusted data. Likewise, annual anomaly uncertainties for the other major independent land surface air temperature datasets overlap with GHCNm v4 uncertainties.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3