Are Peak Summer Sultry Heat Wave Days over the Yangtze–Huaihe River Basin Predictable?

Author:

Gao Miaoni1,Wang Bin2,Yang Jing3,Dong Wenjie4

Affiliation:

1. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, and School of Systems Science, Beijing Normal University, Beijing, China

2. Department of Atmospheric Sciences, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

3. State Key Laboratory of Earth Surface Processes and Resource Ecology, and Academy of Disaster Reduction and Emergency Management, and, Faculty of Geographical Science, Beijing Normal University, Beijing, China

4. School of Atmospheric Sciences, Sun Yat-sen University, Guangdong, China

Abstract

The Yangtze–Huaihe River basin (YHRB) is the core region of sultry heat wave occurrence over China during peak summer [July and August (JA)]. The extremely hot and muggy weather is locally controlled by a descending high pressure anomaly connected to the western Pacific subtropical high. During 1961–2015, the heat wave days (HWDs) in JA over the YHRB exhibit large year-to-year and decadal variations. Prediction of the total number of HWDs in JA is of great societal and scientific importance. The summer HWDs are preceded by a zonal dipole SST tendency pattern in the tropical Pacific and a meridional tripole SST anomaly pattern over the North Atlantic. The former signifies a rapid transition from a decaying central Pacific El Niño in early spring to a developing eastern Pacific La Niña in summer, which enhances the western Pacific subtropical high and increases pressure over the YHRB by altering the Walker circulation. The North Atlantic tripole SST anomalies persist from the preceding winter to JA and excite a circumglobal teleconnection pattern placing a high pressure anomaly over the YHRB. To predict the JA HWDs, a 1-month lead prediction model is established with the above two predictors. The forward-rolling hindcast achieves a significant correlation skill of 0.66 for 1981–2015, and the independent forecast skill made for 1996–2015 reaches 0.73. These results indicate the source of predictability of summer HWDs and provide an estimate for the potential predictability, suggesting about 55% of the total variance may be potentially predictable. This study also reveals greater possibilities for dynamical models to improve their prediction skills.

Funder

the National Research Foundation (NRF) of Korea through a Global Research Laboratory (GRL) grant of the Korean Ministry of Education, Science and Technology

the National Key Research and Development Program-- Global Change and Mitigation Project: Global change risk of population and economic system: mechanism and assessment

the National Natural Science Foundation of China

the National Key Research and Development Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3