Quantifying Agulhas Leakage in a High-Resolution Climate Model

Author:

Cheng Yu1,Putrasahan Dian1,Beal Lisa1,Kirtman Ben1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Abstract

Abstract The leakage of warm and salty water from the Indian Ocean via the Agulhas system into the South Atlantic may play a critical role in climate variability by modulating the buoyancy fluxes associated with the meridional overturning circulation (MOC). New climate models, such as the Community Climate System Model, version 3.5 (CCSM3.5), are now able to resolve the Agulhas retroflection and constrain the inertially choked Agulhas leakage to more realistic values. These ocean-eddy-resolving climate models are poised to bolster understanding of the sensitivity and influence of Agulhas leakage in the coupled climate system. Here, a strategy is devised to quantify Agulhas leakage in CCSM3.5 by applying an offline Lagrangian particle-tracking approach, finding a mean interbasin transport of 11.2 Sv (1 Sv ≡ 106 m3 s−1). It is shown that monthly mean outputs can be used to produce a reliable time series of Agulhas leakage variability on longer-than-seasonal time scales (correlation coefficient r = 0.88; p < 0.01) by comparing to a parallel simulation that archives daily mean fields every 5 days. The results show that Agulhas leakage variability at longer-than-seasonal time scales is less sensitive to the temporal resolution of the velocity fields than is the mean leakage transport.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. Monitoring the oceanic flow between Africa and Antarctica: Report of the first GoodHope cruise;Ansorge;S. Afr. J. Sci.,2005

2. On the role of the Agulhas system in ocean circulation and climate;Beal;Nature,2011

3. Capturing the transport variability of a western boundary jet: Results from the Agulhas Current Time-Series Experiment (ACT);Beal;J. Phys. Oceanogr.,2015

4. Anthropogenic impact on Agulhas leakage;Biastoch;Geophys. Res. Lett.,2013

5. Mesoscale perturbations control inter-ocean exchange south of Africa;Biastoch;Geophys. Res. Lett.,2008

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3