Robust Future Changes in Temperature Variability under Greenhouse Gas Forcing and the Relationship with Thermal Advection

Author:

Holmes Caroline R.1,Woollings Tim2,Hawkins Ed3,de Vries Hylke4

Affiliation:

1. School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom

2. Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

3. National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

4. Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Abstract

Abstract Recent temperature extremes have highlighted the importance of assessing projected changes in the variability of temperature as well as the mean. A large fraction of present-day temperature variance is associated with thermal advection, as anomalous winds blow across the land–sea temperature contrast, for instance. Models project robust heterogeneity in the twenty-first-century warming pattern under greenhouse gas forcing, resulting in land–sea temperature contrasts increasing in summer and decreasing in winter and the pole-to-equator temperature gradient weakening in winter. In this study, future changes in monthly variability of near-surface temperature in the 17-member ensemble ESSENCE (Ensemble Simulations of Extreme Weather Events under Nonlinear Climate Change) are assessed. In winter, variability in midlatitudes decreases whereas in very high latitudes and the tropics it increases. In summer, variability increases over most land areas and in the tropics, with decreasing variability in high latitude oceans. Multiple regression analysis is used to determine the contributions to variability changes from changing temperature gradients and circulation patterns. Thermal advection is found to be of particular importance in the Northern Hemisphere winter midlatitudes, where the change in mean state temperature gradients alone could account for over half the projected changes. Changes in thermal advection are also found to be important in summer in Europe and coastal areas, although less so than in winter. Comparison with CMIP5 data shows that the midlatitude changes in variability are robust across large regions, particularly high northern latitudes in winter and middle northern latitudes in summer.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3