Affiliation:
1. Lamont-Doherty Earth Observatory, Palisades, New York
2. Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York
3. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Abstract
Given the rapidly changing Arctic climate, there is an urgent need for improved seasonal predictions of Arctic sea ice. Yet, Arctic sea ice prediction is inherently complex. Among other factors, wintertime atmospheric circulation has been shown to be predictive of summertime Arctic sea ice extent. Specifically, many studies have shown that the interannual variability of summertime Arctic sea ice extent (SIE) is anticorrelated with the leading mode of extratropical atmospheric variability, the Arctic Oscillation (AO), in the preceding winter. Given this relationship, the potential predictive role of stratospheric circulation extremes and stratosphere–troposphere coupling in linking the AO and Arctic SIE variability is examined. It is shown that extremes in the stratospheric circulation during the winter season, namely, stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully coupled, stratosphere-resolving general circulation model. Consistent with previous work on the AO, it is shown that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the mechanisms in the Barents Sea and along the Eurasian coastline are different. The analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a nontrivial role in determining total September Arctic SIE when combined with other factors.
Funder
National Science Foundation
Office of Naval Research
Publisher
American Meteorological Society
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献