Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific

Author:

Dong Yue1ORCID,Proistosescu Cristian2,Armour Kyle C.3,Battisti David S.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Joint Institute for the Study of the Atmosphere and the Ocean, University of Washington, Seattle, Washington

3. Department of Atmospheric Sciences, and School of Oceanography, University of Washington, Seattle, Washington

Abstract

Abstract Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO2 produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.

Funder

National Science Foundation

Joint Institute for the Study of the Atmosphere and Ocean

The Tamaki Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3