System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies

Author:

Zhang S.1,Harrison M. J.1,Rosati A.1,Wittenberg A.1

Affiliation:

1. Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Abstract

Abstract A fully coupled data assimilation (CDA) system, consisting of an ensemble filter applied to the Geophysical Fluid Dynamics Laboratory’s global fully coupled climate model (CM2), has been developed to facilitate the detection and prediction of seasonal-to-multidecadal climate variability and climate trends. The assimilation provides a self-consistent, temporally continuous estimate of the coupled model state and its uncertainty, in the form of discrete ensemble members, which can be used directly to initialize probabilistic climate forecasts. Here, the CDA is evaluated using a series of perfect model experiments, in which a particular twentieth-century simulation—with temporally varying greenhouse gas and natural aerosol radiative forcings—serves as a “truth” from which observations are drawn, according to the actual ocean observing network for the twentieth century. These observations are then assimilated into a coupled model ensemble that is subjected only to preindustrial forcings. By examining how well this analysis ensemble reproduces the “truth,” the skill of the analysis system in recovering anthropogenically forced trends and natural climate variability is assessed, given the historical observing network. The assimilation successfully reconstructs the twentieth-century ocean heat content variability and trends in most locations. The experiments highlight the importance of maintaining key physical relationships among model fields, which are associated with water masses in the ocean and geostrophy in the atmosphere. For example, when only oceanic temperatures are assimilated, the ocean analysis is greatly improved by incorporating the temperature–salinity covariance provided by the analysis ensemble. Interestingly, wind observations are more helpful than atmospheric temperature observations for constructing the structure of the tropical atmosphere; the opposite holds for the extratropical atmosphere. The experiments indicate that the Atlantic meridional overturning circulation is difficult to constrain using the twentieth-century observational network, but there is hope that additional observations—including those from the newly deployed Argo profiles—may lessen this problem in the twenty-first century. The challenges for data assimilation of model systematic biases and evolving observing systems are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 333 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3