Affiliation:
1. CIRA/CSU, Fort Collins, Colorado
2. NOAA/NESDIS, Fort Collins, Colorado
3. CIMSS/University of Wisconsin—Madison, Madison, Wisconsin
Abstract
Abstract
Geostationary infrared (IR) satellite data are used to provide estimates of the symmetric and total low-level wind fields in tropical cyclones, constructed from estimations of an azimuthally averaged radius of maximum wind (RMAX), a symmetric tangential wind speed at a radius of 182 km (V182), a storm motion vector, and the maximum intensity (VMAX). The algorithm is derived using geostationary IR data from 405 cases from 87 tropical systems in the Atlantic and east Pacific Ocean basins during the 1995–2003 hurricane seasons that had corresponding aircraft data available. The algorithm is tested on 50 cases from seven tropical storms and hurricanes during the 2004 season. Aircraft-reconnaissance-measured RMAX and V182 are used as dependent variables in a multiple linear regression technique, and VMAX and the storm motion vector are estimated using conventional methods. Estimates of RMAX and V182 exhibit mean absolute errors (MAEs) of 27.3 km and 6.5 kt, respectively, for the dependent samples. A modified combined Rankine vortex model is used to estimate the one-dimensional symmetric tangential wind field from VMAX, RMAX, and V182. Next, the storm motion vector is added to the symmetric wind to produce estimates of the total wind field. The MAE of the IR total wind retrievals is 10.4 kt, and the variance explained is 53%, when compared with the two-dimensional wind fields from the aircraft data for the independent cases.
Publisher
American Meteorological Society
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献