A Calibrated Combination of Probabilistic Precipitation Forecasts to Achieve a Seamless Transition from Nowcasting to Very Short-Range Forecasting

Author:

Schaumann Peter1,de Langlard Mathieu1,Hess Reinhold2,James Paul2,Schmidt Volker1

Affiliation:

1. Institute of Stochastics, Ulm University, Ulm, Germany

2. Deutscher Wetterdienst, Offenbach, Germany

Abstract

Abstract In this paper, a new model for the combination of two or more probabilistic forecasts is presented. The proposed combination model is based on a logit transformation of the underlying initial forecasts involving interaction terms. The combination aims at approximating the ideal calibration of the forecasts, which is shown to be calibrated, and to maximize the sharpness. The proposed combination model is applied to two precipitation forecasts, Ensemble-MOS and RadVOR, which were developed by Deutscher Wetterdienst. The proposed combination model shows significant improvements in various forecast scores for all considered lead times compared to both initial forecasts. In particular, the proposed combination model is calibrated, even if both initial forecasts are not calibrated. It is demonstrated that the method enables a seamless transition between both initial forecasts across several lead times to be created. Moreover, the method has been designed in such a way that it allows for fast updates in nearly real time.

Funder

Deutscher Wetterdienst

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3