A Numerical Study to Investigate the Relationship between Moisture Convergence Patterns and Orography in Central Mexico*

Author:

Bhushan S.1,Barros A. P.1

Affiliation:

1. Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina

Abstract

Abstract This study examines small-scale orographic effects on atmospheric moisture convergence at the ridge–valley scale in the Grande de Santiago River basin in central Mexico during a major monsoon storm on 13–14 August 1999. The simulation was performed using a coupled land–cloud resolving model on three nested grids (at 12-, 3-, and 1-km resolutions). The specific objective is to investigate the physical mechanisms that explain the regional space–time organization of orographic precipitation and cloudiness identified in the region from satellite data. The overarching goals of the research were 1) to characterize the effects of landform and topography-flow geometry relationships on the spatial distribution of precipitation and clouds, especially with regard to the role of mountain winds and lateral drainage flows, and 2) to assess the influence of land–atmosphere interactions (specifically latent and sensible heat fluxes) on moisture convergence patterns during monsoon storms. The model results indicate that large-scale moisture convergence dominates the distribution of total water in the troposphere during monsoon storms, which is modulated by topographically induced gravity waves and thermodynamic gradients associated with the land–sea contrast in the coastal zone. In the Grande de Santiago River basin, mountain–plain differences in thermodynamic response control mesoscale moisture convergence patterns leading to nocturnal buildup in the valleys. At the ridge–valley scale, strong convergence and strong winds (up to 15 m s−1) occur on the lee side of ridges oriented perpendicularly to the impinging synoptic flow with the development of transient flow conditions (from supercritical to subcritical) in the valley, independently of the time of day. In turn, this localized hydraulic-jump-like circulation drives strong return winds (i.e., cold outflows in the downvalley direction) that converge in the central lowlands preceding nighttime rainfall, lifting warm moist air at the mouth of the valley, thus initiating nocturnal convection. Simulated moisture convergence patterns are clustered along the ridges and against the foot slopes at the outlet of the north–south oriented catchments consistent with the space–time distribution of satellite observations of precipitation and clouds in the region overall, and with precipitation features detected during the simulated event in particular.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3