Nonlinear Infragravity–Wave Interactions on a Gently Sloping Laboratory Beach

Author:

de Bakker A. T. M.1,Herbers T. H. C.2,Smit P. B.2,Tissier M. F. S.3,Ruessink B. G.1

Affiliation:

1. Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, Netherlands

2. Theiss Research, La Jolla, California

3. Faculty of Civil Engineering and Geosciences, Environmental Fluid Mechanics Section, Delft University of Technology, Delft, Netherlands

Abstract

AbstractA high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy transfers to investigate energy flows within the spectra. Energy flows are identified by dividing transfers into four types of triad interactions, with triads including one, two, or three infragravity–frequency components, and triad interactions solely between short-wave frequencies. In the shoaling zone, the energy transfers are generally from the spectral peak to its higher harmonics and to infragravity frequencies. While receiving net energy, infragravity waves participate in interactions that spread energy of the short-wave peaks to adjacent frequencies, thereby creating a broader energy spectrum. In the short-wave surf zone, infragravity–infragravity interactions develop, and close to shore, they dominate the interactions. Nonlinear energy fluxes are compared to gradients in total energy flux and are observed to balance nearly completely. Overall, energy losses at both infragravity and short-wave frequencies can largely be explained by a cascade of nonlinear energy transfers to high frequencies (say, f > 1.5 Hz) where the energy is presumably dissipated. Infragravity–infragravity interactions seem to induce higher harmonics that allow for shape transformation of the infragravity wave to asymmetric. The largest decrease in infragravity wave height occurs close to the shore, where infragravity–infragravity interactions dominate and where the infragravity wave is asymmetric, suggesting wave breaking to be the dominant mechanism of infragravity wave dissipation.

Publisher

American Meteorological Society

Subject

Oceanography

Reference37 articles.

1. Shoaling of subharmonic gravity waves;Battjes;J. Geophys. Res.,2004

2. Higher-order spectra: The bispectrum and trispectrum;Collis;Mech. Syst. Signal Process.,1998

3. Shoreline dissipation of infragravity waves;De Bakker;Cont. Shelf Res.,2014

4. Observations of bispectra of shoaling surface gravity waves;Elgar;J. Fluid Mech.,1985

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3