The Poisson Link between Internal Wave and Dissipation Scales in the Thermocline. Part II: Internal Waves, Overturns, and the Energy Cascade

Author:

Pinkel Robert1

Affiliation:

1. a Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

AbstractThe irregular nature of vertical profiles of density in the thermocline appears well described by a Poisson process over vertical scales 2–200 m. To what extent does this view of the thermocline conflict with established models of the internal wavefield? Can a one-parameter Poisson subrange be inserted between the larger-scale wavefield and the microscale field of intermittent turbulent dissipation, both of which require many parameters for their specification? It is seen that a small modification to the Poisson vertical correlation function converts it to the corresponding correlation function of the Garrett–Munk (GM) internal wave spectral model. The linear scaling relations and vertical wavenumber dependencies of the GM model are maintained provided the Poisson constant κ0 is equated with the ratio of twice the displacement variance to the vertical correlation scale of the wavefield. Awareness of this Poisson wavefield relation enables higher-order strain statistics to be determined directly from the strain spectrum. Using observations from across the Pacific Ocean, the average Thorpe scale of individual overturning events is found to be nearly equal to the inverse of κ0, the metric of background thermocline distortion. If the fractional occurrence of overturning ϕ is introduced as an additional parameter, a Poisson version of the Gregg–Henyey relationship can be derived. The Poisson constant, buoyancy frequency, and ϕ combine to create a complete parameterization of energy transfer from internal wave scales through the Poisson subrange to dissipation. An awareness of the underlying Poisson structure of the thermocline will hopefully facilitate further improvement in both internal wave spectral models and ocean mixing parameterizations.

Funder

Office of Naval Research

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3