On the Crossover of Boundary Currents in an Idealized Model of the Red Sea

Author:

Zhai Ping1,Pratt Larry J.2,Bower Amy2

Affiliation:

1. MIT–WHOI Joint Program in Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, and Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

2. Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract

AbstractThe west-to-east crossover of boundary currents has been seen in mean circulation schemes from several past models of the Red Sea. This study investigates the mechanisms that produce and control the crossover in an idealized, eddy-resolving numerical model of the Red Sea. The authors also review the observational evidence and derive an analytical estimate for the crossover latitude. The surface buoyancy loss increases northward in the idealized model, and the resultant mean circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In the midbasin, the northward surface flow crosses from the western boundary to the eastern boundary. Numerical experiments with different parameters indicate that the crossover latitude of the boundary currents changes with f0, β, and the meridional gradient of surface buoyancy forcing. In the analytical estimate, which is based on quasigeostrophic, β-plane dynamics, the crossover is predicted to lie at the latitude where the net potential vorticity advection (including an eddy component) is zero. Various terms in the potential vorticity budget can be estimated using a buoyancy budget, a thermal wind balance, and a parameterization of baroclinic instability.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contourite-like deposits suggest stronger-than-present circulation in the Plio-Pleistocene Red Sea;Global and Planetary Change;2024-09

2. Seasonal variability of Red Sea mixed layer depth: the influence of atmospheric buoyancy and momentum forcing;Frontiers in Marine Science;2024-03-07

3. Indian Ocean circulation;The Indian Ocean and its Role in the Global Climate System;2024

4. Physical and biogeochemical characteristics of the Indian Ocean marginal seas;The Indian Ocean and its Role in the Global Climate System;2024

5. Tritium and radiocarbon in the water column of the Red Sea;Journal of Environmental Radioactivity;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3