Sensitivity Analysis of the Spatial Structure of Forecasts in Mesoscale Models: Continuous Model Parameters

Author:

Marzban Caren1,Du Xiaochuan2,Sandgathe Scott3,Doyle James D.4,Jin Yi4,Lederer Nicholas C.5

Affiliation:

1. Applied Physics Laboratory, and Department of Statistics, University of Washington, Seattle, Washington

2. Department of Statistics, University of Washington, Seattle, Washington

3. Applied Physics Laboratory, University of Washington, Seattle, Washington

4. Naval Research Laboratory, Monterey, California

5. The Boeing Company, Applied Mathematics, Seattle, Washington

Abstract

A methodology is proposed for examining the effect of model parameters (assumed to be continuous) on the spatial structure of forecasts. The methodology involves several statistical methods of sampling and inference to assure the sensitivity results are statistically sound. Specifically, Latin hypercube sampling is employed to vary the model parameters, and multivariate multiple regression is used to account for spatial correlations in assessing the sensitivities. The end product is a geographic “map” of p values for each model parameter, allowing one to display and examine the spatial structure of the sensitivity. As an illustration, the effect of 11 model parameters in a mesoscale model on forecasts of convective and grid-scale precipitation, surface air temperature, and water vapor is studied. A number of spatial patterns in sensitivity are found. For example, a parameter that controls the fraction of available convective clouds and precipitation fed back to the grid scale influences precipitation forecasts mostly over the southeastern region of the domain; another parameter that modifies the surface fluxes distinguishes between precipitation forecasts over land and over water. The sensitivity of surface air temperature and water vapor forecasts also has distinct spatial patterns, with the specific pattern depending on the model parameter. Among the 11 parameters examined, there is one (an autoconversion factor in the microphysics) that appears to have no influence in any region and on any of the forecast quantities.

Funder

Office of Naval Research

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3