Cluster Analysis of North Atlantic–European Circulation Types and Links with Tropical Pacific Sea Surface Temperatures

Author:

Fereday D. R.1,Knight J. R.1,Scaife A. A.1,Folland C. K.1,Philipp A.2

Affiliation:

1. Met Office Hadley Centre, Exeter, United Kingdom

2. Institute of Geography, University of Augsburg, Augsburg, Germany

Abstract

Abstract Observed atmospheric circulation over the North Atlantic–European (NAE) region is examined using cluster analysis. A clustering algorithm incorporating a “simulated annealing” methodology is employed to improve on solutions found by the conventional k-means technique. Clustering is applied to daily mean sea level pressure (MSLP) fields to derive a set of circulation types for six 2-month seasons. A measure of the quality of this clustering is defined to reflect the average similarity of the fields in a cluster to each other. It is shown that a range of classifications can be produced for which this measure is almost identical but which partition the days quite differently. This lack of a unique set of circulation types suggests that distinct weather regimes in NAE circulation do not exist or are very weak. It is also shown that the stability of the clustering solution to removal of data is not maximized by a suitable choice of the number of clusters. Indeed, there does not appear to be any robust way of choosing an optimum number of circulation types. Despite the apparent lack of preferred circulation types, cluster analysis can usefully be applied to generate a set of patterns that fully characterize the different circulation types appearing in each season. These patterns can then be used to analyze NAE climate variability. Ten clusters per season are chosen to ensure that a range of distinct circulation types that span the variability is produced. Using this classification, the effect of forcing of NAE circulation by tropical Pacific sea surface temperature (SST) anomalies is analyzed. This shows a significant influence of SST in this region on certain circulation types in almost all seasons. A tendency for a negative correlation between El Niño and an anomaly pattern resembling the positive winter North Atlantic Oscillation (NAO) emerges in a number of seasons. A notable exception is November–December, which shows the opposite relationship, with positive NAO-like patterns correlated with El Niño.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3