The 2020 International Verification Methods Workshop Online: Major Outcomes and Way Forward

Author:

Casati Barbara1,Dorninger Manfred2,Coelho Caio A. S.3,Ebert Elizabeth E.4,Marsigli Chiara5,Mittermaier Marion P.6,Gilleland Eric7

Affiliation:

1. Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada;

2. University of Vienna, Vienna, Austria;

3. Center for Weather Forecast and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, São Paulo, Brazil;

4. Bureau of Meteorology, Docklands, Victoria, Australia;

5. Deutscher Wetterdienst, Offenbach am Main, Germany, and Arpae Emilia-Romagna, Bologna, Italy;

6. Met Office, Exeter, United Kingdom;

7. Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The International Verification Methods Workshop was held online in November 2020 and included sessions on physical error characterization using process diagnostics and error tracking techniques; exploitation of data assimilation techniques in verification practices, e.g., to address representativeness issues and observation uncertainty; spatial verification methods and the Model Evaluation Tools, as unified reference verification software; and meta-verification and best practices for scores computation. The workshop reached out to diverse research communities working in the areas of high-impact weather, subseasonal to seasonal prediction, polar prediction, and sea ice and ocean prediction. This article summarizes the major outcomes of the workshop and outlines future strategic directions for verification research.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference82 articles.

1. Point-biserial correlation-based skill scores for probabilistic forecasts;Acharya, N.,2020

2. An assessment of land–atmosphere ­interactions over South America using satellites, reanalysis and two global climate models;Baker, J. C. A.,2021

3. Aspects of ­ECMWF model performances in polar areas;Bauer, P.,2014

4. Accounting for representativeness in the verification of ensemble forecasts;Ben Bouallegue, Z.,2020

5. Accounting for representativeness in the verification of ensemble precipitation forecasts;Ben Bouallegue, Z.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3