Thunder Hours: How Old Methods Offer New Insights into Thunderstorm Climatology

Author:

DiGangi Elizabeth A.1,Stock Michael1,Lapierre Jeff1

Affiliation:

1. Earth Networks, Germantown, MD

Abstract

AbstractLightning data are often used to measure the location and intensity of thunderstorms. This study presents 5 years of data from the Earth Networks Global Lightning Detection Network (ENGLN) in the form of thunder hours. A thunder hour is defined as an hour during which thunder can be heard from a given location, and thunder hours can be calculated for the entire globe. Thunder hours are an intuitive measure of thunderstorm frequency where the one-hour interval corresponds to the life span of most thunderstorms, and the hourly temporal resolution of the data also represents long-lived systems well. Flash density-observing systems are incredibly useful, but they have some drawbacks which limit how they can be used to quantify global thunderstorm activity on a climatological scale: flash density distributions derived from satellite observations must sacrifice a great deal of their spatial resolution in order to capture the diurnal convective cycle, and the detection efficiencies of ground-based lightning detection systems are not uniform in space or constant in time. Examining convective patterns in the context of thunder hours lends insight into thunderstorm activity without being heavily influenced by network performance, making thunder hours particularly useful for studying thunderstorm climatology. The ENGLN thunder hour dataset offers powerful utility to climatological studies involving lightning and thunderstorms. This study first shows that the ENGLN thunder hours dataset is very consistent with past measurements of global thunderstorm activity and the global electric circuit using only 5 years of data. Then, this study showcases thunder anomaly fields, designed to be analogous to temperature anomalies, which can be used to diagnose changes in thunderstorm frequency relative to the long-term mean in both time and space.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3