Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project
Author:
Wendisch M.11, Brückner M.1, Crewell S.22, Ehrlich A.1, Notholt J.33, Lüpkes C.44, Macke A.55, Burrows J. P.3, Rinke A.4, Quaas J.1, Maturilli M.4, Schemann V.2, Shupe M. D.66, Akansu E. F.5, Barrientos-Velasco C.5, Bärfuss K.77, Blechschmidt A.-M.3, Block K.1, Bougoudis I.3, Bozem H.88, Böckmann C.99, Bracher A.1010, Bresson H.4, Bretschneider L.711, Buschmann M.3, Chechin D. G.1212, Chylik J.2, Dahlke S.4, Deneke H.5, Dethloff K.4, Donth T.1, Dorn W.4, Dupuy R.1313, Ebell K.2, Egerer U.5, Engelmann R.5, Eppers O.1414, Gerdes R.4, Gierens R.2, Gorodetskaya I. V.1515, Gottschalk M.1, Griesche H.5, Gryanik V. M.12, Handorf D.4, Harm-Altstädter B.7, Hartmann J.4, Hartmann M.5, Heinold B.5, Herber A.4, Herrmann H.5, Heygster G.3, Höschel I.4, Hofmann Z.4, Hölemann J.4, Hünerbein A.5, Jafariserajehlou S.3, Jäkel E.1, Jacobi C.1, Janout M.4, Jansen F.1616, Jourdan O.13, Jurányi Z.4, Kalesse-Los H.1, Kanzow T.4, Käthner R.5, Kliesch L. L.2, Klingebiel M.1, Knudsen E. M.2, Kovács T.1717, Körtke W.3, Krampe D.4, Kretzschmar J.1, Kreyling D.4, Kulla B.2, Kunkel D.8, Lampert A.7, Lauer M.2, Lelli L.1818, von Lerber A.1919, Linke O.1, Löhnert U.2, Lonardi M.1, Losa S. N.2020, Losch M.4, Maahn M.1, Mech M.2, Mei L.3, Mertes S.5, Metzner E.1, Mewes D.1, Michaelis J.4, Mioche G.13, Moser M.2121, Nakoudi K.4, Neggers R.2, Neuber R.4, Nomokonova T.2, Oelker J.2222, Papakonstantinou-Presvelou I.1, Pätzold F.7, Pefanis V.22, Pohl C.3, van Pinxteren M.5, Radovan A.2, Rhein M.3, Rex M.4, Richter A.3, Risse N.2, Ritter C.4, Rostosky P.3, Rozanov V. V.3, Donoso E. Ruiz1, Saavedra Garfias P.1, Salzmann M.1, Schacht J.5, Schäfer M.1, Schneider J.11, Schnierstein N.2, Seifert P.5, Seo S.3, Siebert H.5, Soppa M. A.4, Spreen G.3, Stachlewska I. S.2323, Stapf J.1, Stratmann F.5, Tegen I.5, Viceto C.15, Voigt C.21, Vountas M.3, Walbröl A.2, Walter M.3, Wehner B.5, Wex H.5, Willmes S.2424, Zanatta M.4, Zeppenfeld S.5
Affiliation:
1. Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany; 2. Institut für Geophysik und Meteorologie, Universität zu Köln, Cologne, Germany; 3. Institut für Umweltphysik, Universität Bremen, Bremen, Germany; 4. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, Germany; 5. Leibniz-Institut für Troposphärenforschung, Leipzig, Germany; 6. Physical Sciences Laboratory, National Oceanic and Atmospheric Administration, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado; 7. Institut für Flugführung, Technische Universität Braunschweig, Brunswick, Germany; 8. Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, Germany; 9. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, and Institut für Mathematik, Universität Potsdam, Potsdam, Germany; 10. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, and Institut für Umweltphysik, Universität Bremen, Bremen, Germany; 11. Abteilung für Partikelchemie, Max-Planck-Institut für Chemie, Mainz, Germany; 12. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und Meeresforschung, Bremerhaven and Potsdam, Germany, and A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia; 13. Laboratoire de Météorologie Physique, Université Clermont Auvergne, Auvergne, France; 14. Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, and Abteilung für Partikelchemie, Max-Planck-Institut für Chemie, Mainz, Germany; 15. Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal; 16. Max-Planck-Institut für Meteorologie, Hamburg, Germany; 17. Zentrum für Marine Umweltwissenschaften, Universität Bremen, Bremen, Germany; 18. Institut für Umweltphysik, Universität Bremen, Bremen, Germany, and National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland; 19. Finnish Meteorological Institute, Helsinki, Finland; 20. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, Germany, and Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; 21. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, and Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, Germany; 22. Institut für Umweltphysik, Universität Bremen, Bremen, and Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, Germany; 23. Faculty of Physics, University of Warsaw, Warsaw, Poland; 24. Abteilung für Umweltmeteorologie, Fakultät für Regionale und Umweltwissenschaften, Universität Trier, Trier, Germany
Abstract
Abstract
Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
Publisher
American Meteorological Society
Subject
Atmospheric Science
Reference197 articles.
1. Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations;Akperov, M.,2020 2. Phytoplankton dynamics in a changing Arctic Ocean;Ardyna, M.,2020 3. Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion;Armour, K. C.,2019 4. On the influence of carbonic acid in the air upon the temperature of the ground;Arrhenius, S.,1896 5. Spatiotemporal variability of solar radiation introduced by clouds over Arctic sea ice;Barrientos-Velasco, C.,2020
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|