Blizzard Conditions in the Canadian Arctic: Observations and Automated Products for Forecasting

Author:

Burrows William R.12,Mooney Curtis J.2

Affiliation:

1. a Observation Based Research Section, Science and Technology Branch, Environment and Climate Change Canada, Edmonton, Alberta, Canada

2. b National Lab West, Meteorological Service of Canada, Edmonton, Alberta, Canada

Abstract

AbstractBlizzard conditions occur regularly in the Canadian Arctic, with high impact on travel and life there. These extreme conditions are challenging to forecast for this vast domain because the observation network is sparse and remote sensing coverage is limited. To establish occurrence statistics we analyzed METeorological Aerodrome Reports (METARs) from Canadian Arctic stations between October and May 2014-2018. Blizzard conditions occur most frequently in open tundra east and north of the boreal forest boundary, with highest frequency found on the northwest side of Hudson Bay and over flat terrain in central Baffin Island. Except in sheltered locations, the reported cause of reduced visibility is blowing snow without precipitating snow in about one-half to two-thirds of METARs made by a human observer, even higher at some stations.We produce three products that forecast blizzard conditions from post-processed NWP model output. The blizzard potential (BP), generated from expert’s rules, is intended for warning well in advance of areas where blizzard conditions may develop. A second product (BH) stems from regression equations for the probability of visibility ≤ 1 km in blowing snow and/or concurrent snow derived by Baggaley and Hanesiak (2005). A third product (RF), generated with the Random Forest ensemble classification algorithm, makes a consensus YES/NO forecast for blizzard conditions. We describe the products, provide verification, and show forecasts for a significant blizzard event. Receiver Operator Characteristic curves and critical success index scores show RF forecasts have greater accuracy than BP and BH forecasts at all lead times.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3