Forecasting Peak Wind Gusts Using Meteorologically Stratified Gust Factors and MOS Guidance

Author:

Kahl Jonathan D. W.1

Affiliation:

1. Atmospheric Science Group, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Abstract

Abstract Gust prediction is an important element of weather forecasting services, yet reliable methods remain elusive. Peak wind gusts estimated by the meteorologically stratified gust factor (MSGF) model were evaluated at 15 locations across the United States during 2010–17. This model couples gust factors, site-specific climatological measures of “gustiness,” with wind speed and direction forecast guidance. The model was assessed using two forms of model output statistics (MOS) guidance at forecast projections ranging from 1 to 72 h. At 11 of 15 sites the MSGF model showed skill (improvement over climatology) in predicting peak gusts out to projections of 72 h. This has important implications for operational wind forecasting because the method can be utilized at any location for which the meteorologically stratified gust factors have been determined. During particularly windy conditions the MSGF model exhibited skill in predicting peak gusts at forecast projections ranging from 6 to 72 h at roughly half of the sites analyzed. Site characteristics and local wind climatologies were shown to exert impacts on gust factor model performance. The MSGF method represents a viable option for the operational prediction of peak wind gusts, although model performance will be sensitive to the quality of the necessary wind speed and direction forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference27 articles.

1. Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain;Adame;Sci. Total Environ.,2018

2. Fatalities associated with nonconvective high-wind events in the United States;Ashley;J. Appl. Meteor. Climatol.,2008

3. EPA, 2015: AERMINUTE user’s guide. EPA-454/B-15-006, 65 pp., https://www3.epa.gov/ttn/scram/7thconf/aermod/aerminute_userguide.pdf.

4. Fovell, R. G., and Y.Cao, 2014: Wind and gust forecasting in complex terrain. 15th WRF Users’ Workshop, Boulder, CO, NCAR, 5A.2, http://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/ppts/5A.2.pdf.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3