Improving High-Impact Forecasts through Sensitivity-Based Ensemble Subsets: Demonstration and Initial Tests

Author:

Ancell Brian C.1

Affiliation:

1. Texas Tech University, Lubbock, Texas

Abstract

Abstract Ensemble sensitivity can reveal features in the flow at early forecast times that are relevant to the predictability of chosen high-impact forecast aspects (e.g., heavy precipitation) later in time. In an operational environment, it thus might be possible to choose ensemble subsets with improved predictability over the full ensemble if members with the smallest errors in regions of large ensemble sensitivity can be identified. Since numerous observations become available hourly, such a technique is feasible and could be executed well before the next assimilation/extended forecast cycle, potentially adding valuable lead time to forecasts of high-impact weather events. Here, a sensitivity-based technique that chooses subsets of forecasts initialized from an 80-member ensemble Kalman filter (EnKF) is tested by ranking 6-h errors in sensitive regions toward improving 24-h forecasts of landfalling midlatitude cyclones on the west coast of North America. The technique is first tested within an idealized framework with one of the ensemble members serving as truth. Subsequent experiments are performed in more realistic scenarios with an independent truth run, observation error added, and sparser observations. Results show the technique can indeed produce ensemble subsets that are improved relative to the full ensemble for 24-h forecasts of landfalling cyclones. Forecast errors are found to be smallest when the greatest 70% of ensemble sensitivity magnitudes with subsets of size 5–30 members are used, as well as when only the cases of the largest forecast spread are considered. Finally, this study presents considerations for extending this technique into fully realistic situations with regard to additional high-impact events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3