Evaluation of X-Band Dual-Polarization Radar-Rainfall Estimates from OLYMPEX

Author:

Derin Yagmur1,Anagnostou Emmanouil1,Anagnostou Marios2,Kalogiros John3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

2. Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, and Department of Environmental Sciences, Ionian University, Zakynthos, Greece

3. Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece

Abstract

Abstract The difficulty of representing high rainfall variability over mountainous areas using ground-based sensors is an open problem in hydrometeorology. Observations from locally deployed dual-polarization X-band radar have the advantage of providing multiparameter measurements near ground that carry significant information useful for estimating drop size distribution (DSD) and surface rainfall rate. Although these measurements are at fine spatiotemporal scale and are less inhibited by complex topography than operational radar network observations, uncertainties in their estimates necessitate error characterization based upon in situ measurements. During November 2015–February 2016, a dual-polarized Doppler on Wheels (DOW) X-band radar was deployed on the Olympic Peninsula of Washington State as part of NASA’s Olympic Mountain Experiment (OLYMPEX). In this study, rain gauges and disdrometers from a dense network positioned within 40 km of DOW are used to evaluate the self-consistency and accuracy of the attenuation and brightband/vertical profile corrections, and rain microphysics estimation by SCOP-ME, an algorithm that uses optimal parameterization and best-fitted functions of specific attenuation coefficients and DSD parameters with radar polarimetric measurements. In addition, the SCOP-ME precipitation microphysical retrievals of median volume diameter D0 and normalized intercept parameter NW are evaluated against corresponding parameters derived from the in situ disdrometer spectra observations.

Funder

Eversource

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3