A Physically Based Atmospheric Variables Downscaling Technique

Author:

Rouf Tasnuva1,Mei Yiwen1,Maggioni Viviana1,Houser Paul2,Noonan Margaret1

Affiliation:

1. Sid and Reva Dewberry Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, Fairfax, Virginia

2. Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia

Abstract

AbstractThis study proposes a physically based downscaling approach for a set of atmospheric variables that relies on correlations with landscape information, such as topography, surface roughness, and vegetation. A proof-of-concept has been implemented over Oklahoma, where high-resolution, high-quality observations are available for validation purposes. Hourly North America Land Data Assimilation System version 2 (NLDAS-2) meteorological data (i.e., near-surface air temperature, pressure, humidity, wind speed, and incident longwave and shortwave radiation) have been spatially downscaled from their original 1/8° resolution to a 500-m grid over the study area during 2015. Results show that correlation coefficients between the downscaled products and ground observations are consistently higher than the ones between the native resolution NLDAS-2 data and ground observations. Furthermore, the downscaled variables present smaller biases than the original ones with respect to ground observations. Results are therefore encouraging toward the use of the 500-m dataset for land surface and hydrological modeling. This would be especially useful in regions where ground-based observations are sparse or not available altogether, and where downscaled global reanalysis products may be the only option for model inputs at scales that are useful for decision-making.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3