Assessments of Surface Winds and Waves from the NCEP Ensemble Forecast System

Author:

Campos Ricardo Martins1,Alves Jose-Henrique G. M.2,Penny Stephen G.1,Krasnopolsky Vladimir3

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. NOAA/NCEP/EMC/SRG/Center for Weather and Climate Prediction, College Park, Maryland

3. NOAA/NCEP/EMC/Center for Weather and Climate Prediction, College Park, Maryland

Abstract

Abstract The error characteristics of surface waves and winds produced by ensemble forecasts issued by the National Centers for Environmental Prediction are analyzed as a function of forecast range and severity. Eight error metrics are compared, separating the scatter component of the error from the systematic bias. Ensemble forecasts of extreme winds and extreme waves are compared to deterministic forecasts for long lead times, up to 10 days. A total of 29 metocean buoys is used to assess 1 year of forecasts (2016). The Global Wave Ensemble Forecast System (GWES) performs 10-day forecasts four times per day, with a spatial resolution of 0.5° and a temporal resolution of 3 h, using a 20-member ensemble plus a control member (deterministic) forecast. The largest errors in GWES, beyond forecast day 3, are found to be associated with winds above 14 m s−1 and waves above 5 m. Extreme percentiles after the day-8 forecast reach 30% of underestimation for both 10-m-height wind (U10) and significant wave height (Hs). The comparison of probabilistic wave forecasts with deterministic runs shows an impressive improvement of predictability on the scatter component of the errors. The error for surface winds drops from 5 m s−1 in the deterministic runs, associated with extreme events at longer forecast ranges, to values around 3 m s−1 using the ensemble approach. As a result, GWES waves are better predicted, with a reduction in error from 2 m to less than 1.5 m for Hs. Nevertheless, under extreme conditions, critical systematic and scatter errors are identified beyond the day-6 and day-3 forecasts, respectively.

Funder

National Weather Service Office of Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3