Seasonal Forecasting of Wind and Waves in the North Atlantic Using a Grand Multimodel Ensemble

Author:

Bell Ray1,Kirtman Ben1

Affiliation:

1. Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract This study assesses the skill of multimodel forecasts of 10-m wind speed, significant wave height, and mean wave period in the North Atlantic for the winter months. The 10-m winds from four North American multimodel ensemble models and three European Multimodel Seasonal-to-Interannual Prediction project (EUROSIP) models are used to force WAVEWATCH III experiments. Ten ensembles are used for each model. All three variables can be predicted using December initial conditions. The spatial maps of rank probability skill score are explained by the impact of the North Atlantic Oscillation (NAO) on the large-scale wind–wave relationship. Two winter case studies are investigated to understand the relationship between large-scale environmental conditions such as sea surface temperature, geopotential height at 500 hPa, and zonal wind at 200 hPa to the NAO and the wind–wave climate. The very strong negative NAO in 2008/09 was not well forecast by any of the ensembles while most models correctly predicted the sign of the event. This led to a poor forecast of the surface wind and waves. A Monte Carlo model combination analysis is applied to understand how many models are needed for a skillful multimodel forecast. While the grand multimodel ensemble provides robust skill, in some cases skill improves once some models are not included.

Funder

National Oceanic and Atmospheric Administration

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Decade of the North American Multimodel Ensemble (NMME): Research, Application, and Future Directions;Bulletin of the American Meteorological Society;2022-03

2. On Correlation between Wind and Wave Storms;Journal of Marine Science and Engineering;2021-12-13

3. Evaluation of subseasonal to seasonal forecasts over India for renewable energy applications;Advances in Geosciences;2021-11-03

4. Estimation of Koopman Transfer Operators for the Equatorial Pacific SST;Journal of the Atmospheric Sciences;2021-04

5. NAO predictability from external forcing in the late 20th century;npj Climate and Atmospheric Science;2021-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3