Extended-Range Probabilistic Fire-Weather Forecasting Based on Ensemble Model Output Statistics and Ensemble Copula Coupling

Author:

Worsnop Rochelle P.1,Scheuerer Michael1,Hamill Thomas M.2

Affiliation:

1. Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

Abstract

Abstract Probabilistic fire-weather forecasts provide pertinent information to assess fire behavior and danger of current or potential fires. Operational fire-weather guidance is provided for lead times fewer than seven days, with most products only providing day 1–3 outlooks. Extended-range forecasts can aid in decisions regarding placement of in- and out-of-state resources, prescribed burns, and overall preparedness levels. We demonstrate how ensemble model output statistics and ensemble copula coupling (ECC) postprocessing methods can be used to provide locally calibrated and spatially coherent probabilistic forecasts of the hot–dry–windy index (and its components). The univariate postprocessing fits the truncated normal distribution to data transformed with a flexible selection of power exponents. Forecast scenarios are generated via the ECC-Q variation, which maintains their spatial and temporal coherence by reordering samples from the univariate distributions according to ranks of the raw ensemble. A total of 20 years of ECMWF reforecasts and ERA-Interim reanalysis data over the continental United States are used. Skill of the forecasts is quantified with the continuous ranked probability score using benchmarks of raw and climatological forecasts. Results show postprocessing is beneficial during all seasons over CONUS out to two weeks. Forecast skill relative to climatological forecasts depends on the atmospheric variable, season, location, and lead time, where winter (summer) generally provides the most (least) skill at the longest lead times. Additional improvements of forecast skill can be achieved by aggregating forecast days. Illustrations of these postprocessed forecasts are explored for a past fire event.

Funder

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3