A Perfect Prognosis Scheme for Forecasting Warm-Season Lightning over Florida

Author:

Shafer Phillip E.1,Fuelberg Henry E.1

Affiliation:

1. Department of Meteorology, The Florida State University, Tallahassee, Florida

Abstract

Abstract This study develops and evaluates a statistical scheme for forecasting warm-season lightning over Florida. Four warm seasons of analysis data from the Rapid Update Cycle (RUC) and lightning data from the National Lightning Detection Network are used in a perfect prognosis technique to develop a high-resolution, gridded forecast guidance product for warm-season cloud-to-ground (CG) lightning over Florida. The most important RUC-derived parameters are used to develop equations producing 3-hourly spatial probability forecasts for one or more CG flashes, as well as the probability of exceeding various flash count percentile thresholds. Binary logistic regression is used to develop the equations for one or more flashes, while a negative binomial model is used to predict the amount of lightning, conditional on one or more flashes occurring. The scheme is applied to output from three mesoscale models during an independent test period (the 2006 warm season). The evaluation is performed using output from the National Centers for Environmental Prediction (NCEP) 13-km RUC (RUC13), the NCEP 12-km North American Mesoscale Model, and local high-resolution runs of the Weather Research and Forecasting (WRF) Model for a domain over south Florida. Forecasts from all three mesoscale models generally show positive skill through the 2100–2359 UTC period with respect to a model containing only climatology and persistence (L-CLIPER) and persistence alone. A forecast example using the high-resolution WRF Model is shown for 16–17 August 2006. Although the exact timing and placement of forecast lightning are not perfect, there generally is good agreement between the forecasts and their verification, with most of the observed lightning occurring within the higher forecast probability contours.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference78 articles.

1. Effects of the large-scale flow on characteristic features of the sea breeze.;Arritt;J. Appl. Meteor.,1993

2. Benjamin, S. G. , and Coauthors, 2002: RUC20—The 20-km version of the Rapid Update Cycle. NWS Technical Procedures Bulletin 490, 30 pp.

3. Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model.;Benjamin;Mon. Wea. Rev.,2004

4. Bothwell, P. D. , 2002: Prediction of cloud-to-ground lightning in the western United States. Ph.D. thesis, University of Oklahoma, 178 pp.

5. Bothwell, P. D. , 2005: Development of an operational statistical scheme to predict the location and intensity of lightning. Preprints, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 4.2. [Available online at http://ams.confex.com/ams/pdfpapers/85013.pdf.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3