Introducing TC Translation Speed into the Dynamical–Statistical–Analog Ensemble Forecast for Landfalling Typhoon Daily Precipitation Model and Simulating the Daily Precipitation of Supertyphoon Lekima (2019)

Author:

Ma Yunqi1,Jia Zuo2,Ren Fumin1,Jia Li1,McBride John L.34

Affiliation:

1. a State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

2. b CSSC Marine Technology Co., Ltd., Beijing, China

3. c School of Earth Science, University of Melbourne, Melbourne, Australia

4. d Research and Development Division, Bureau of Meteorology, Melbourne, Australia

Abstract

Abstract The Dynamical–Statistical–Analog Ensemble Forecast for Landfalling Typhoon Daily Precipitation (DSAEF_LTP_D) model is introduced in this paper. To improve the DSAEF_LTP_D model’s forecasting ability, tropical cyclone (TC) translation speed was introduced. Taking Supertyphoon Lekima (2019), which produced widespread heavy rainfall from 9 to 11 August 2019 as the target TC, two simulation experiments associated with the prediction of daily precipitation were conducted: the first involving the DSAEF_LTP_D model containing only the TC track (the actual trajectory of the TC center), named DSAEF_LTP_D-1; and the second containing both TC track and translation speed, named DSAEF_LTP_D-2. The results show the following: 1) With TC translation speed added into the model, the forecasting performance for heavy rainfall (24-h accumulated precipitation exceeding 50 and 100 mm) on 9 and 10 August improves, being able to successfully capture the center of heavy rainfall, but the forecasting performance is the same as DSAEF_LTP_D-1 on 11 August. 2) Compared with four numerical weather prediction (NWP) models (i.e., ECMWF, GFS, GRAPES, and SMS-WARMS), the TS100 + TS50 (the sum of TS values for predicting 24-h accumulated precipitation of ≥100 and ≥50 mm) of DSAEF_LTP_D-2 is comparable to the best performer of the NWP models (ECMWF) on 9 and 10 August, while the performance of DSAEF_LTP_D model for predicting heavy rainfall on 11 August is poor. 3) The newly added similarity regions make up for the deficiency that the similarity regions are narrower when the TC track is northward, which leads to DSAEF_LTP_D-2 having a better forecasting performance for heavy rainfall on 11 August, with the TS100 + TS50 increasing from 0.3021 to 0.4286, an increase of 41.87%.

Funder

Key Technologies Research and Development Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference41 articles.

1. On the relationship between intensity changes and rainfall distribution in tropical cyclones over the North Indian Ocean;Ankur, K.,2020

2. An intuitive metric to quantify and communicate tropical cyclone rainfall hazard;Bosma, C. D.,2020

3. Review of typhoon very heavy rainfall in China (in Chinese);Chen, L.,2017

4. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones;Chen, L.,2010

5. Impacts of cold air intrusion on extratropical transition of Typhoon Masta;Di, L.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3