A Wind Tunnel Study on the Shape, Oscillation, and Internal Circulation of Large Raindrops with Sizes between 2.5 and 7.5 mm

Author:

Szakáll Miklós1,Diehl Karoline1,Mitra Subir K.1,Borrmann Stephan2

Affiliation:

1. Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Mainz, Germany

2. Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, and Max-Planck-Insitut für Chemie, Mainz, Germany

Abstract

Abstract Precipitation prediction using weather radars requires detailed knowledge of the shape parameters of raindrops falling at their terminal velocities in air. Because the raindrops undergo oscillation, the most important shape parameters from the radar prediction point of view are the equilibrium drop shape, the time-averaged axis ratio, and the oscillation frequency. These parameters for individual water drops with equivalent diameter from 2.5 to 7.5 mm were investigated in a vertical wind tunnel using high-speed video imaging. A very good agreement was found between the measured and the theoretically determined raindrop shape calculated by a force balance model. A new method was developed to determine the equivalent drop diameter with the help of the oscillation frequency. The drop size determination by means of the frequency method was found to be three times more precise than by volumetric methods. The time-averaged axis ratio was found to be equal to the equilibrium axis ratio in the investigated raindrop size range. The analysis of the oscillation frequency of the raindrops revealed that the drops undergo multimode oscillations and are oscillating in a transverse mode in addition to an axisymmetric oblate–prolate mode. Experiments are included in which the internal circulation associated with drop oscillation was investigated and compared to theory.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3