Annual Reversal of the Equatorial Intermediate Current in the Pacific: Observations and Model Diagnostics

Author:

Marin Frédéric1,Kestenare Elodie1,Delcroix Thierry1,Durand Fabien1,Cravatte Sophie1,Eldin Gérard1,Bourdallé-Badie Romain2

Affiliation:

1. Université de Toulouse, UPS (OMP-PCA), and IRD, LEGOS, Toulouse, France

2. GIP Mercator Océan, Ramonville St. Agne, and CERFACS, Toulouse, France

Abstract

Abstract A large reversal of zonal transport below the thermocline was observed over a period of 6 months in the western Pacific Ocean between 2°S and the equator [from 26.2 Sv (1 Sv ≡ 106 m3 s−1) eastward in October 1999 to 28.6 Sv westward in April 2000]. To document this reversal and assess its origin, an unprecedented collection of ADCP observations of zonal currents (2004–06), together with a realistic OGCM simulation of the tropical Pacific, was analyzed. The results of this study indicate that this reversal is the signature of intense annual variability in the subsurface zonal circulation at the equator, at the level of the Equatorial Intermediate Current (EIC) and the Lower Equatorial Intermediate Current (L-EIC). In this study, the EIC and the L-EIC are both shown to reverse seasonally to eastward currents in boreal spring (and winter for the L-EIC) over a large depth range extending from 300 m to at least 1200 m. The peak-to-peak amplitude of the annual cycle of subthermocline zonal currents at 165°E in the model is ∼30 cm s−1 at the depth of the EIC, and ∼20 cm s−1 at the depth of the L-EIC, corresponding to a mass transport change as large as ∼100 Sv for the annual cycle of near-equatorial zonal transport integrated between 2°S and 2°N and between 410- and 1340-m depths. Zonal circulations on both sides of the equator (roughly within 2° and 5.5° in latitude) partially compensate for the large transport variability. The main characteristics of the annual variability of middepth modeled currents and subsurface temperature (e.g., zonal and vertical phase velocities, meridional structure) are consistent, in the OGCM simulation, with the presence, beneath the thermocline, of a vertically propagating equatorial Rossby wave forced by the westward-propagating component of the annual equatorial zonal wind stress. Interannual modulation of the annual variability in subthermocline equatorial transport is discussed.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3