Air–Sea Interactions in Light of New Understanding of Air–Land Interactions

Author:

Sun Jielun1,French Jeffrey R.2

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. University of Wyoming, Laramie, Wyoming

Abstract

Abstract Air–sea interactions are investigated using the data from the Coupled Boundary Layers Air–Sea Transfer experiment under low wind (CBLAST-Low) and the Surface Wave Dynamics Experiment (SWADE) over sea and compared with measurements from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) over land. Based on the concept of the hockey-stick transition (HOST) hypothesis, which emphasizes contributions of large coherent eddies in atmospheric turbulent mixing that are not fully captured by Monin–Obukhov similarity theory, relationships between the atmospheric momentum transfer and the sea surface roughness, and the role of the sea surface temperature (SST) and oceanic waves in the turbulent transfer of atmospheric momentum, heat, and moisture, and variations of drag coefficient Cd(z) over sea and land with wind speed V are studied. In general, the atmospheric turbulence transfers over sea and land are similar except under weak winds and near the sea surface when wave-induced winds and oceanic currents are relevant to wind shear in generating atmospheric turbulence. The transition of the atmospheric momentum transfer between the stable and the near-neutral regimes is different over land and sea owing to the different strength and formation of atmospheric stable stratification. The relationship between the air–sea temperature difference and the turbulent heat transfer over sea is dominated by large air temperature variations compared to the slowly varying SST. Physically, Cd(z) consists of the surface skin drag and the turbulence drag between z and the surface; the increase of the latter with decreasing V leads to the minimum Cd(z), which is observed, but not limited to, over sea.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3