Prediction of Graupel Density in a Bulk Microphysics Scheme

Author:

Milbrandt Jason A.1,Morrison Hugh2

Affiliation:

1. Atmospheric Numerical Prediction Research, Environment Canada, Montreal, Quebec, Canada

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract A method to predict the bulk density of graupel ρg has been added to the two-moment Milbrandt–Yau bulk microphysics scheme. The simulation of graupel using the modified scheme is illustrated through idealized simulations of a mesoscale convective system using a 2D kinematic model with a prescribed flow field and different peak updraft speeds. To examine the relative impact of the various approaches to represent rimed ice, simulations were run for various graupel-only and graupel-plus-hail configurations. Because of the direct feedback of ρg to terminal fall speeds, the modified scheme produces a much different spatial distribution of graupel, with more mass concentrated in the convective region resulting in changes to the surface precipitation at all locations. With a strong updraft, the model can now produce solid precipitation at the surface in the convective region without a separate hail category. It is shown that a single rimed-ice category is capable of representing a realistically wide range of graupel characteristics in various atmospheric conditions without the need for a priori parameter settings. Sensitivity tests were conducted to examine various aspects of the scheme that affect the simulated ρg. Specific parameterizations pertaining to other hydrometeor categories now have a direct impact on the simulation of graupel, including the assumed aerosol distribution for droplet nucleation, which affects the drop sizes of both cloud and rain, and the mass–size relation for snow, which affects its density and hence the embryo density of graupel converted from snow due to riming.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3