Quality Controlling Surf Zone Acoustic Doppler Velocimeter Observations to Estimate the Turbulent Dissipation Rate

Author:

Feddersen Falk1

Affiliation:

1. Scripps Institution of Oceanography, La Jolla, California

Abstract

Abstract High-quality measurements of the turbulent dissipation rate ε are required to diagnose field surf-zone turbulence budgets. Quality control (QC) methods are presented for estimating surf zone ε with acoustic Doppler velocimeter (ADV) data. Bad ADV velocity data points are diagnosed with both the ADV signal strength (SS) and correlation (CORR). The fraction of bad SS data points (δSS) depends inversely upon the wave-amplitude-normalized transducer distance below the mean sea surface. The fraction of bad CORR data points δCORR can be elevated when δSS is low. The δCORR depends inversely upon the wave-amplitude-normalized sensing volume distance below the mean sea surface, and also increases with increased wave breaking, consistent with turbulence- and bubble-induced Doppler noise. Velocity spectra derived from both “patched” and “interpolated” time series are used to estimate ε. Two QC tests, based upon the properties of a turbulent inertial subrange, are used to reject bad ε data runs. The first test checks that the vertical velocity spectrum’s power-law exponent is near . The second test checks that a ratio R of horizontal and vertical velocity spectra is near 1. Over all δCORR, 70% of the patched and interpolated data runs pass these tests. However, for larger δCORR > 0.1 (locations higher in the water column), 50% more patched than interpolated data runs pass the QC tests. Previous QC methods designed for wave studies are not appropriate for ε QC. The results suggest that ε can be consistently estimated over the lower 60% of the water column and >0.1 m above the bed within a saturated surf zone.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3