Airborne Measurements of Terrain-Induced Pressure Perturbations

Author:

Parish Thomas R.1,Geerts Bart1

Affiliation:

1. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Abstract

Abstract Airborne measurement of the horizontal pressure field using differential GPS technology has been established during the last few years. Accurate aircraft measurement of the horizontal pressure gradient force requires an independent determination of the height of the airborne platform above some reference level. Here the authors demonstrate a differential GPS technique that uses data from a fixed reference station to refine the vertical position of the aircraft. A series of research flight legs by the University of Wyoming King Air research aircraft (UWKA) were conducted during the winter seasons of 2008 and 2009 over the Medicine Bow Mountains in southern Wyoming. Flight patterns consisted of a series of geographically fixed, parallel legs along a quasi-isobaric surface above the mountainous terrain, allowing the finescale mapping of the horizontal pressure (or geopotential height) field. The removal of the large-scale gradient and tendency isolates the terrain-induced pressure perturbation field. Results obtained using differential GPS measurements of aircraft height show that the Medicine Bow Range induces pronounced horizontal pressure perturbations, with a leeside region of low pressure downwind of the crest, in two cases: on 11 February 2008 and 20 February 2009. A wind maximum is found downwind of the elevated terrain consistent with this pressure gradient. Simulations of these two cases were performed using the Weather Research and Forecasting Model (WRF). The WRF height patterns for the time of the UWKA flight matched the general isobaric height patterns observed. Simulations and observations consistently show that the cross-mountain acceleration is stronger when the perturbation pressure gradient is larger.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3