A Theory for the Balance between Warm Rain and Ice Crystal Processes of Precipitation in Mixed-Phase Clouds

Author:

Phillips Vaughan T. J.1ORCID

Affiliation:

1. a Department of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden

Abstract

Abstract Mixed-phase clouds contain both supercooled cloud liquid and ice crystals. In principle, precipitation may be initiated either by the liquid phase or by the ice phase. Ice crystals may grow by vapor diffusion to become snow (“ice crystal process”), forming “cold” precipitation. Equally, cloud droplets, when large enough, coalesce to form “warm” precipitation by the “warm rain process.” Warm rain could be supercooled and freeze as “warm” graupel. In the present paper, a new simplified theoretical analysis is provided to examine the microphysical system consisting of three species of hydrometeor, namely, cloud liquid, “cold ice” (crystals, snow), and “warm rain” (frozen or supercooled). This is obtained by nondimensionalizing and simplifying the evolution equations for the mass of each species. Analytical formulas are given for equilibria. Feedback analysis shows that the sign of the feedback is linked to the abundance of precipitation, with a neutral surface in the 3D phase space. The system’s precipitation amount explodes while in the initial unstable regime, crossing the neutral surface and approaching the equilibrium point that is a stable attractor. Positive and negative feedbacks are elucidated. In a standard case, the cold ice mass is about 1000 times larger than the warm rain mass. To illustrate the physical behavior of the theory, sensitivity tests are performed with respect to environmental conditions (e.g., aerosol, updraft speed) and microphysical parameters (e.g., riming and sedimentation rates for cold ice). Cold ice prevails, especially in fast ascent, due to its low bulk density, favoring slow sedimentation and a wide cross-sectional area for riming. Significance Statement The theory elucidates how the ice phase can prevail in the precipitation from any mixed-phase clouds with supercooled cloud liquid and crystals. The ice phase radically suppresses cloud liquid by riming when active and “wins” the competition against coalescence. This prevalence of ice is shown to arise from the low bulk density of snow. The cloud is viewed as a system of negative and positive feedbacks that prevail in realms of stability and instability in a 3D phase space.

Funder

Department of Energy

Svenska Forskningsrådet Formas

VINNOVA

Publisher

American Meteorological Society

Reference33 articles.

1. Importance of snow to global precipitation;Field, P. R.,2015

2. Some ice nucleation characteristics of Asian and Saharan desert dust;Field, P. R.,2006

3. The microphysics of the warm-rain and ice crystal processes of precipitation in simulated continental convective storms;Gupta, A. K.,2023

4. The riming properties of snow crystals;Harimaya, T.,1975

5. The gap between simulation and understanding in climate modeling;Held, I. M.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3