Improvement of the Cloud Microphysics Scheme of the Mesoscale Model at the Japan Meteorological Agency Using Spaceborne Radar and Microwave Imager of the Global Precipitation Measurement as Reference

Author:

Ikuta Yasutaka1ORCID,Satoh Masaki2,Sawada Masahiro3,Kusabiraki Hiroshi3,Kubota Takuji4

Affiliation:

1. a Metrological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

2. b Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

3. c Japan Meteorological Agency, Tsukuba, Japan

4. d Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Japan

Abstract

Abstract In this study, the single-moment 6-class bulk cloud microphysics scheme used in the operational numerical weather prediction system at the Japan Meteorological Agency was improved using the observations of the Global Precipitation Measurement (GPM) core satellite as reference values. The original cloud microphysics scheme has the following biases: underestimation of cloud ice compared to the brightness temperature of the GPM Microwave Imager (GMI) and underestimation of the lower-troposphere rain compared to the reflectivity of GPM Dual-frequency Precipitation Radar (DPR). Furthermore, validation of the dual-frequency rate of reflectivity revealed that the dominant particles in the solid phase of simulation were graupel and deviated from DPR observation. The causes of these issues were investigated using a single-column kinematic model. The underestimation of cloud ice was caused by a high ice-to-snow conversion rate, and the underestimation of precipitation in the lower layers was caused by an excessive number of small-diameter rain particles. The parameterization of microphysics scheme is improved to eliminate the biases in the single-column model. In the forecast obtained using the improved scheme, the underestimation of cloud ice and rain is reduced. Consequently, the prediction errors of hydrometeors were reduced against the GPM satellite observations, and the atmospheric profiles and precipitation forecasts were improved.

Funder

japan aerospace exploration agency

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3