Orographic Effects on Landfalling Lake-Effect Systems

Author:

Gowan Thomas M.1,Steenburgh W. James1,Minder Justin R.2

Affiliation:

1. a Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. b Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract Landfalling lake- and sea-effect (hereafter lake-effect) systems often interact with orography, altering the distribution and intensity of precipitation, which frequently falls as snow. In this study, we examine the influence of orography on two modes of lake-effect systems: long-lake-axis-parallel (LLAP) bands and broad-coverage, open-cell convection. Specifically, we generate idealized large-eddy simulations of a LLAP band produced by an oval lake and broad-coverage, open-cell convection produced by an open lake (i.e., without flanking shorelines) with a downstream coastal plain, 500-m peak, and 2000-m ridge. Without terrain, the LLAP band intersects a coastal baroclinic zone over which ascent and hydrometeor mass growth are maximized, with transport and fallout producing an inland precipitation maximum. The 500-m peak does not significantly alter this structure, but slightly enhances precipitation due to orographic ascent, increased hydrometeor mass growth, and reduced subcloud sublimation. In contrast, a 2000-m ridge disrupts the band by blocking the continental flow that flanks the coastlines. This, combined with differential surface heating between the lake and land, leads to low-level flow reversal, shifting the coastal baroclinic zone and precipitation maximum offshore. In contrast, the flow moves over the terrain in open lake, open-cell simulations. Over the 500-m peak, this yields an increase in the frequency of weaker (<1 m s−1) updrafts and weak precipitation enhancement, although stronger updrafts decline. Over the 2000-m ridge, however, buoyancy and convective vigor increase dramatically, contributing to an eightfold increase in precipitation. Overall, these results highlight differences in the influence of orography on two common lake-effect modes. Significance Statement Landfalling lake- and sea-effect snowstorms frequently interact with hills, mountains, and upland regions, altering the distribution and intensity of snowfall. Using high-resolution numerical modeling with simplified lake shapes and terrain features, we illustrate how terrain features affect two common types of lake-effect storms and why long-lake-axis-parallel (LLAP) bands can feature high precipitation rates but weaker orographic enhancement than broad-coverage, open-cell convection.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3