The modulation effect of sea surface cooling on the eyewall replacement cycle in Typhoon Trami (2018)

Author:

Li Xiangcheng1,Cheng Xiaoping12,Fei Jianfang1,Huang Xiaogang1,Ding Juli1

Affiliation:

1. a College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China.

2. b State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Abstract

Abstract The duration of the eyewall replacement cycle (ERC) in typhoons is determined by the rate of dissipation of the inner eyewall and intensification of the outer eyewall, which is an important indicator for predicting changes in the intensity and structure of typhoons. Previous studies on ERCs have focused on the internal storm dynamics associated with the interactions between the concentric eyewalls (CEs), but the impacts of the sea surface cooling (SSC) on ERCs remain not adequately investigated. The slow movement of Typhoon Trami results in remarkable SSC. Using a coupled atmosphere-ocean model, the simulation for Trami generates an ERC that matches observations, whereas an unrealistic long-lived ERC is produced in the uncoupled simulation. Numerical simulations suggest that the typhoon-induced nonuniform SSC can not only weaken the typhoon, but can also modulate the duration of the ERCs. The SSC acts like a catalyst for triggering the negative feedback between the surface heat exchange and the circulations of Trami to reduce the energy supply to the inner eyewall more severely where the sea surface temperature (SST) dropped more sharply. The SSC works in concert with the interactions between the CEs to weaken the inner eyewall faster, thus terminating the ERC of Trami rapidly. The results indicate that a better understanding of the modulation effect of SSC is required for the accurate forecast of ERCs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3