Ice Nucleating Particle Measurements at 241 K during Winter Months at 3580 m MSL in the Swiss Alps

Author:

Boose Yvonne1,Kanji Zamin A.1,Kohn Monika1,Sierau Berko1,Zipori Assaf2,Crawford Ian3,Lloyd Gary3,Bukowiecki Nicolas4,Herrmann Erik4,Kupiszewski Piotr4,Steinbacher Martin5,Lohmann Ulrike1

Affiliation:

1. Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

2. Institute of Earth Sciences, Hebrew University, Jerusalem, Israel

3. Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

4. Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

5. Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

Abstract

Abstract Ice nucleating particle (INP) concentrations were measured at the High Altitude Research Station Jungfraujoch, Switzerland, 3580 m above mean sea level during the winter months of 2012, 2013, and 2014 with the Portable Ice Nucleation Chamber (PINC). During the measurement periods, the research station was mostly located in the free troposphere, and particle concentrations were low. At temperature T = 241 K, INP concentrations in the deposition regime [relative humidity with respect to water (RHw) = 93%] were, on average, below 1.09 per standard liter of air (stdL−1; normalized to 1013 hPa and 273 K) and 4.7 ± 8.3 stdL−1 in the condensation regime (RHw = 103%) in winter 2014. The deployment of a particle concentrator upstream of PINC decreased the limit of detection (LOD) by a factor of 3 compared to earlier measurements. The authors discuss a potential bias of INP measurements toward higher concentrations if data below the LOD are disregarded and thus recommend reporting subLOD data in future publications. Saharan dust and more local, basaltic dust mixed with marine aerosol were found to constitute the dominant INP type. Bioaerosols were not observed to play a role in ice nucleation during winter because of their low concentration during this period. The INP concentrations at Jungfraujoch are low in comparison to other studies of INP at this temperature. This represents the first study addressing interannual variations of INP concentrations during winter at one location.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3