Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part III: Introduction of Multiple Free Categories

Author:

Milbrandt J. A.1,Morrison H.2

Affiliation:

1. Atmospheric Numerical Weather Prediction Research, Environment and Climate Change Canada, Dorval, Quebec, Canada

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The predicted particle properties (P3) scheme introduced in Part I of this series represents all ice hydrometeors using a single “free” category, in which the bulk properties evolve smoothly through changes in the prognostic variables, allowing for the representation of any type of ice particle. In this study, P3 has been expanded to include multiple free ice-phase categories allowing particle populations with different sets of bulk properties to coexist, thereby reducing the detrimental effects of property dilution. The modified version of P3 is the first scheme to parameterize ice-phase microphysics using multiple free categories. The multicategory P3 scheme is described and its overall behavior is illustrated. It is shown using an idealized 1D kinematic model that the overall simulation of total ice mass, reflectivity, and surface precipitation converges with additional categories. The correct treatment of the rime splintering process, which promotes multiple ice modes, is shown to require at least two categories in order to be included without introducing problems associated with property dilution. Squall-line simulations using a 3D dynamical model with one, two, and three ice categories produce reasonable reflectivity structures and precipitation rates compared to radar observations. In the multicategory simulations, ice hydrometeors from different categories and with different bulk properties are shown to coexist at the same points, with effects on reflectivity structure and precipitation. The new scheme thus appears to work reasonably in a full 3D model and is ready to be tested more widely for research and operational applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3